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Abstract
We consider the specific models of Zhu–Kroemer and BenDaniel–Duke in
a sech2-mass background and point out interesting correspondences with
the stationary 1-soliton and 2-soliton solutions of the KdV equation in a
supersymmetric framework.

PACS numbers: 03.65.−w, 11.30.Lm, 03.65.Ge, 11.30.Pb

In dealing with position dependent mass (PDM) models controlled by a sech2-mass profile,
we demonstrated [1] recently that, in the framework of a first-order intertwining relationship,
such a mass environment generates an infinite sequence of bound states for the conventional
free-particle problem. Noting that the intertwining relationships are naturally embedded in
the formalism [2] of the so-called supersymmetric quantum mechanics (SUSYQM), we feel
tempted to dig a little deeper by choosing to examine the connections between the discrete
eigenvalues of such a PDM quantum Hamiltonian (transformed appropriately so that a SUSY
structure is evident) and the stationary soliton solutions of the Korteweg–de Vries (KdV)
equation that match with the mass function up to a constant of proportionality.

Let us begin with the standard time-independent representation of the PDM Schrödinger
equation [3] [

− d2

dx2
+

3

4

M ′2

M2
− 1

2

M ′′

M
+ M(Veff − ε)

]
ψ = 0, (1)

where M(x) is the dimensionless equivalence of the mass function m(x) defined by
m(x) = m0M(x), and we have chosen units such that h̄ = 2m0 = 1. The effective potential
Veff contains, apart from the given V (x), the real ambiguity parameters α and β whose
occurrences are typical in PDM settings:

Veff = V (x) +
1

2
(β + 1)

M ′′

M2
− {α(α + β + 1) + β + 1}M

′2

M3
. (2)
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Suitable physical choices of α and β have been reported in the literature [4–25], but of
particular interest to us are the schemes of Zhu–Kroemer (ZK) [4] [α = −1/2, β = 0] and
BenDaniel–Duke (BDD) [5] [α = 0, β = −1] which were shown [1] to be dual of each other
for the free-particle case V (x) = V0 that is independent of any choice of M(x).

Substituting (2) into (1) and assuming for V0 the form

V0 = ε − λ(λ + 1)q2, λ, q ∈ R, (3)

we can recast (1) to the standard constant-mass Schrödinger equation, namely(
− d2

dx2
+ u

)
ψ = 0 (4)

with the energy level term missing. In (4), u is given by

u =
[

3

4
− {α(α + β + 1) + β + 1}

]
M ′2

M2
+

1

2
β

M ′′

M
− λ(λ + 1)Mq2. (5)

However, equation (4) can also be regarded as the linearized partner of the Riccati equation

u = v2 + v′ (6)

upon putting v = ψ ′
ψ

. The latter is the Cole–Hopf transformation.
A nonlinear connection such as the one given by (6), also known as the Miura map, has

an interesting implication. It transfers a solution of the modified KdV equation

vt = 6v2v′ − v′′′ (7)

into a solution of the KdV equation

ut = 6uu′ − u′′′ (8)

which is straightforward to check.
The KdV equation has a very rich internal structure [26, 27]. In particular, it admits of a

Lax representation Lt = [B,L], where L = −∂2 + u is a Schrödinger-like operator and B is
given by B = −4∂3

x +6u∂x +3u′. One can solve for L in the from L(t) = S(t)L(0)S−1(t) with
St = BS. The related eigenvalue problem then implies that the spectrum of L is conserved
and yields for the KdV an infinite chain of conserved charges.

Noting that the KdV is invariant under the set of transformations

t → t ′, x → x ′ − 6ct ′, u → u′ + c, (9)

where c is a constant, the energy levels µn can be introduced in (4),(
− d2

dx2
+ u

)
ψ = µnψ. (10)

The manner of interplay between the PDM form (5) of u for specific choices of the parameters
α, β and the initial condition u(x, 0) = u0 used as inputs to solve for the KdV (as is normally
done in the inverse scattering problem) is our point of enquiry.

It can be proved that the discrete eigenvalues µn are time independent. For this we have
to express the KdV in the conserved form

ut + (−3u2 + uxx)x = 0 (11)

and substitute u from (10) into it. We obtain

(µn)tψ
2 + (ψφx − ψxφ)x = 0, (12)

where φ = ψt + ψxxx − 3(u + µ)ψx . On integrating (12) we find (µn)t = 0 where we
have employed normalized ψ and considered vanishing asymptotic conditions for ψ and its
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derivatives. The eigenvalues µn are determined using for the potential the initial value u0 that
corresponds to a stationary soliton solution of the KdV equation.

In the context of (10), the Riccati equation (6) is transformed to

u = v2 + v′ + µ, (13)

where v as a solution of the generalized MKdV equation

vt = 6(v2 + µ)v′ − v′′′ (14)

ensures that u evolves according to the KdV equation.
For the 1-soliton and the 2-soliton solutions of the KdV, the corresponding starting

solutions u0 along with ψ, v and the eigenvalues µn (n = 1, 2) are given by

1-soliton: u
(1)
0 = −2q2 sech2 qx,

ψ1 = 1√
2

sech qx, v(1) = −q tanh qx, µ1 = −q2 (15)

2-soliton: u
(2)
0 = −6q2 sech2 qx,

ψ
(a)
2 =

√
3

2 sech2 qx, v
(a)
2 = −2q tanh qx, µ

(a)
2 = −4q2

and

ψ
(b)
2 =

√
3

2
sech qx tanh qx, v

(b)
2 = q

1 − 2 tanh2 qx

tanh qx
, µ

(b)
2 = −q2,

where note that for one discrete value of the Schrödinger equation (10), there exists a 1-soliton
solution and vice versa. Similarly for the 2-soliton case. Here the ψ’s are normalized.

The results in (15), which can also be extended to the N-soliton case, have been obtained by
solving the eigenvalue problem for the Schrödinger equation (10). The solutions u

(1)
0 and u

(2)
0

act in (10) as the reflectionless potentials. The inverse scattering method, which exploits this
reflectionless feature, determines the evolution of the scattering parameters. Subsequently, the
Geĺfand–Levitan integral equation is solved to obtain the solution u(x, t) of the KdV equation.

Turning now to the PDM induced u given by (5), we immediately recognize from (10) that
for the choice of the mass function M(x) = sech2 qx, the ZK scheme yields the 1-soliton results
u

(1)
0 , ψ1(µ = −q2) corresponding to λ = 1,−2 and the 2-soliton result u

(2)
0 , ψ

(a)
2 (µ = −4q2)

and ψ
(b)
2 (µ = −q2) corresponding to λ = 2,−3.

On the other hand, the BDD scheme is consistent with the form

u = q2(1 − 2 sech2 qx), λ = 1,−2 (16)

for ψ1(µ = 0) and

u = q2(1 − 6 sech2 qx), λ = 2,−3 (17)

for both the sets ψ
(a)
2 (µ = −3q2) and ψ

(b)
2 (µ = 0).

To interpret the above results, a few remarks on SUSY are in order [28]. We first of all
verify that not only (13) but also u = v2 − v′ + µ carries a solution of the generalized KdV
(14) into a solution of the KdV.

Denoting

V (±) ≡ u± − µ = v2 ∓ v′, (18)

we note that the combination V (±) can be identified as the usual partner potentials of SUSYQM.
To examine the role of V (±) in the present context, let there be a Hamiltonian H1

with potential V1 that is asymptotically vanishing and having a set of n discrete eigenvalues
µ1, µ2, . . . , µn. If we define V + = V1 − µn+1 then, in unbroken SUSY, we at once know that
the spectra of V (+) and those of V (−) are one to one except that the latter has an additional
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µ = 0 state. In other words, the eigenvalues of V (−) are µ1 −µn+1, µ2 −µn+1, . . . , µn −µn+1

and 0. This means that the Hamiltonian H2 with potential V2 defined by V2 = V (−) + µn+1

has (n + 1) discrete eigenvalues µ1, µ2, . . . , µn, µn+1.
Let us apply the above ideas to the simple case of V1 = 0 and generate the corresponding

potential V2 with a single bound state with µ = −q2 [29]. We have V (+) = v2 − v′ = q2 > 0:
in other words, V (+) has no bound state at all. Solving we get v = −q tanh qx (i.e. the
1-soliton result) which in turn gives V (−) = q2(1 − 2 sech2 qx) that supports a zero energy
(µ = 0) bound state ψ0 ∼sech qx:

H−ψ0 = ψ ′′
0 + (v2 + v′)ψ0. (19)

Thus V2 = −2q2 sech2 qx has a single bound state.
We immediately recognize V2 and V (−) to be the PDM potential u for the ZK and BDD

schemes respectively corresponding to the 1-soliton case. The same is true for the 2-soliton
results with v matching with the 2-soliton solutions and V (−) emerging similar to (17).

One-dimensional supersymmetric approach to PDM quantum systems has been explored
before in PDM scenarios. The partner potentials were found to obey [22] the same PDM
dependence but in different potentials. The approach of this work is however different in
spirit from such a viewpoint in that we have sought to establish a link between a hierarchy of
reflectionless potentials (corresponding to the stationary soliton solutions of the KdV) with an
arbitrary bound-state spectrum and those of SUSY in PDM models for suitable values of the
ambiguity parameters. Our starting potential pertaining to the free-particle case V (x) = V0

can be made to coincide with V (+) by choosing, for example, ε = 3q2 in the 1-soliton case
and ε = 12q2 in the 2-soliton case.

Finally, we can extend our treatment to other special cases of the effective potential Veff ,
namely those of the Bastard [30] and Li and Kuhn (redistributed) [31] Hamiltonians. For the
1-soliton result of (15), u for the Bastard scheme is u = −q2(1+3 sech2 qx)(µ = −2q2) while
for the 2-soliton results given by (16), u turns out to be −q2(1 + 6 sech2 qx) both for ψ

(a)
2 and

ψ
(b)
2 , with an associated µ-value of µ = −5q2 and µ = −2q2, respectively. However, in the

Bastard model λ is non-integral. A non-integral λ also emerges in the Li–Kuhn scheme where
we find u = −2q2 sech2 qx(µ = −q2) for the 1-soliton solution and u = −6q2 sech2 qx for
both the 2-soliton solutions of ψ

(a)
2 (µ = −4q2) and ψ

(b)
2 (µ = −q2).
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